报告人:张姣(讲师),上海大学
题目: Cyclic homology of strong smash product algebras
时间:2020/11/10, 13:30-14:10,腾讯会议:会议号:150759920,密码:123456
摘要:For the strong smash product algebra $A/#_{_R}B$ of two algebras $A$and $B$ with a bijective morphism $R$ mapping from $B/ot A$ to $A/ot B$, we construct a cylindrical module $A/natural B$ whose diagonal cyclic module $/Delta_{/bullet}(A/natural B)$ is graphically proven to be isomorphic to$C_{/bullet}(A/#_{_R}B)$ the cyclic module of the algebra.A spectral sequence is established to converge to the cyclic homology of $A/#_{_R}B$. Examples are provided to show how our results work. We also obtain the cyclic homology of Pareigis's algebra.
中国·浙江 湖州市二环东路759号(313000) 浙ICP备10025412号 浙公网安备 33050202000195号 版权所有:党委宣传部