华体会app官网(中国)集团有限公司党委宣传部、新闻中心主办

数学学科2020系列学术报告十八 (量子群及其表示理论系列报告)

来源:理学院 发布日期:2020-11-09

报告人:张姣(讲师),上海大学

题目: Cyclic homology of strong smash product algebras

时间:2020/11/10, 13:30-14:10,腾讯会议:会议号:150759920,密码:123456

摘要:For the strong smash product algebra $A/#_{_R}B$ of two algebras $A$and $B$ with a bijective morphism $R$ mapping from $B/ot A$ to $A/ot B$, we construct a cylindrical module $A/natural B$ whose diagonal cyclic module $/Delta_{/bullet}(A/natural B)$ is graphically proven to be isomorphic to$C_{/bullet}(A/#_{_R}B)$ the cyclic module of the algebra.A spectral sequence is established to converge  to the cyclic homology of $A/#_{_R}B$. Examples are provided to show how our results work. We also obtain the cyclic homology of Pareigis's algebra.