题目:On connected components of skew group algebras
报告人:林亚南教授
时间:2021年10月20日9:30---10:30
地点:1-232
摘要:Let A be a basic connected finite dimensional associative algebra over an algebraically closed field k and G be a cyclic group. By Reiten in 1985, there is a quiver Q_G with relations \rho_G such that the skew group algebras A[G] is Morita equivalent to the quotient algebra of path algebra kQ_G/(\rho_G). Generally, the quiver Q_G is not connected. Motivated by Guo's work, in this talk we will show a method to determine the number of connect components of Q_G. Meanwhile, we introduce the notion of weight for underlying quiver of A such that A is G-graded and determine the connect components of smash product A#kG^{*}.This is the joint work with J.Chen and Q.Dong.
个人简介:林亚南,厦门大学陈景润数学特聘教授,博士生导师。国务院政府特殊津贴专家,国家万人计划领军人才,教育部第四届教学名师奖,福建省杰出人民教师,福建省师德标兵,福建省高校领军人才。教育部大学数学课程教学指导委员会成员。国家精品课程、国家优秀资源共享课程、国家线上一流课程《高等代数》负责人。厦门大学数学专业省级教学团队带头人。主持的项目获得福建省高等教育教学成果一等奖、特等奖,全国高等教育教学成果二等奖。《数学研究》《数学文化》编委。连续主持国家自然科学基金7个面上项目。独立获得福建省科技进步二等奖,合作获得教育部自然科学一等奖。已经培养毕业博士11人,毕业硕士40多人。
中国·浙江 湖州市二环东路759号(313000) 浙ICP备10025412号 浙公网安备 33050202000195号 版权所有:党委宣传部